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Wavefunctions of a free electron in an external field and 
their application in intense field interactions: 
I. Non-relativistic treatment 

J Bergou 
Central Research Institute for Physics, H-1525 Budapest, POB 49, Hungary 

Received 15 May 1979, in final form 15 February 1980 

Abstract. The behaviour of a free electron in a homogeneous but time varying external field 
is analysed and exact results are presented. Based on the exact wavefunction obtained, a 
new perturbation method for treating intense field problems is proposed. In particular, the 
transition amplitude of nonlinear direct and inverse bremsstrahlung is calculated. 

1. Introduction 

A detailed analysis is given here of the behaviour of a free electron in a homogeneous 
external field. We consider separately the case of the constant and the periodically 
time-dependent fields. For the description of the electron the Schrodinger equation is 
used in a non-relativistic treatment together with the dipole, or long wavelength, 
approximation of the field. The general solution of the problem is given and it is shown 
how it can be matched to different initial conditions. By choosing special initial 
conditions the stationary solution in a constant field (Landau and Lifshitz 1963) and the 
plane wave solution in a periodic field (Keldysh 1965) are reobtained. By using this last 
set of solutions we develop a perturbation method for treating intense field problems 
and we give the expression for multiphoton free-free transition matrix elements 
(nonlinear inverse bremsstrahlung). The relationship between this method and other 
approximation methods (Henneberger 1968, Faisal 1973) is also established and we 
give the expression for multiphoton transition matrix elements as well. The transition 
matrix element has the form predicted previously (Bergou 1975) for the case of a 
periodic Hamiltonian. 

2. Electron in a constant electric field 

The Schrodinger equation for an electron in a homogeneous constant electric field with 
amplitude Eo is 

( t 2 / 2 m  - eE,$)+ = ih. at,b/at. (1) 

Operators are denoted by *. m is the mass of the electron, e its charge and h. Planck’s 
constant divided by 27. Vector quantities are denoted by bold type. 
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As the Hamiltonian does not depend 011 time, we can look for the stationary solution 
in the form $(x, t) = exp[-(i/h)Et]u(x). Instead of solving the corresponding equation 
for u(x) we perform the following gauge transformation: 

cp’=cp-- ’ -, ax A’ = grad xt x = -cEfit. 
c at 

Here 0 and A are the scalar and vector potentials, respectively, and ,y is chosen so that 
in the new gauge a’= 0. If, furthermore, in the new gauge $f  = exp[(ie/hc)x]$ (Schiff 
1955), then $f  satisfies the following wave equation: 

As the transformation between 4 and $’ is unitary, (1) and ( l a )  give completely 
equivalent descriptions of the same problem. Nevertheless, ( l a )  is more convenient for 
practical calculation because in the momentum representation the Hamiltonian 
becomes diagonal and the equation is readily integrable. Its general solution is 

Here f(p) is an as yet unspecified function of the momentum, to be determined from the 
initial, boundary, or any subsidiary conditions (such as completeness and orthonor- 
mality). It is interesting to note at this point that in contrast to (l), equation ( l a )  has no 
stationary solution because its Hamiltonian explicitly depends on time. The stationary 
solution to (1) corresponds to a special choice of f(p) in (2), namely (in one dimension) 

1 
exp[ - i( - P 3  - *)I, 

f E ( p ) =  (2.nheEo) h 6meEo eEo (3) 

Here E is the energy of the stationary state (the separation constant of equation (1)) and 
with this choice of the normalisation constant the states are properly orthonormalised 
on an energy scale (Landau and Lifshitz 1963). The present approach makes use of a 
peculiarity of the problem, namely that equation (2) provides a short cut to the direct 
determination of a complete orthonormal set of time-dependent solutions of (1). While 
with t-independent H the choice between a time-dependent and the usual stationary 
basis is just a matter of taste, the former can be more conveniently generalised for the 
case of t-dependent fields. 

3. Electron in an oscillating field 

In the following we shall consider the interaction of a free electron with a periodic 
external field. The corresponding Schrodinger equation with a scalar potential reads 

( t 2 / 2 m  - eEof cos ut)$ = ih a$/at, A = 0 ,  (4) 

and with a vector potential 

L( f i  +w sin wt 4’ = ih-, 84’ 
2m eEo )’ at 

A’= -(c/o)&’ sin ut, af = 0. 
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The gauge transformation described above is effected in this case by x =  
-(c/w)Eox sin wt. Equation (4a) in the momentum representation is readily integrable 
again and its general solution is 

2 i 1  
$ ’ ( p ,  t )  = g ( p )  exp[ - lof ( p + * sin UT) d ~ ]  . 

w 

In the limit w + 0 this solution coincides with (2 ) ,  and g ( p )  satisfies the conditions stated 
above for f ( p ) .  The solution of (4) is given by $ ( p ,  t) = $ ’ [ p  - ( e E o / w )  sin ut], and the 
corresponding solution in the coordinate representation is 

2 1 d3p’ g ( p ’ )  exp( :[ p ’ x  -- 1 I (p’+-sin eEo 
UT) d ~ ] ]  (5a )  2m o 0 

ccl’b, t )  = ( 2 * h ) 1 / 2  

and for $(x, t )  we have 

The usual plane wave solution given by Keldysh (1965) can be obtained by substituting 
g ( p ’ )  = S ( p  - p ’ ) .  Tbe meaning of this solution becomes clearer if we consider the time 
evolution operator U(t )  of equation (4a). From the definition of the evolution operator 
we have 

fi(t) = exp[ -: lof ( f i  +-Eo e sin UT ) 2  d ~ ] ,  fi(0) = 1. 
w 

When one applies it to a momentum state Ip)  (wGh the bra and ket vector notation), one 
obtains the time development of the state. As U ( t )  is diagonal in the p representation, 
its only effect on Ip)  is to multiply it by a complex c number which is a function of p and t. 
Furthermore the modulus of this number is unity, which is a consequence of the unitary 
nature of f i ( t ) :  

fi(t)lP) = V(P, t)lP>, IWP, t)I2= 1. (7)  
Here V ( p ,  t) is the matrix element of the time evolution operator and from (6) it can be 
seen that it has the form predicted by the Floquet theorem for the solution of differential 
equations with periodic coefficients (Shirley 1965). From (7) we see that a given 
momentum state remains always the same, only its phase will change in time. The same 
result can be expressed using a somewhat different language. The equation of motion 
for the matrix elements of the density operator in the momentum representation is, 
from either ( l a )  or ( 4 a ) ,  

In either case, the Hamiltonian H is diagonal in the p-representation and H(p1) and 
H ( p 2 )  are the corresponding eigenvalues. The solution is again easily obtained by 
direct integration: 
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By setting p1 = p 2  = p we see that the initial momentum distribution function (given by 
the diagonal elements of p* at t = 0) remains unchanged: 

P(P9 P, t )  = P(Pt P, 0). (10) 

From (10) we may conclude, in agreement with (7), that the momentum distribution of a 
free electron in an external field remains unchanged in the dipole approximation. 
Deviation from this result is expected only if the dipole approximation is dropped. 

4. Application to nonlinear direct and inverse bremsstrahlung 

Consider now the problem of the interaction of an electron with an external field in the 
presence of a background potential. This corresponds to modelling the induced 
bremsstrahlung process. The Schrodinger equation is 

Depending on the nature of the problem, different approximation methods for the 
solution of equation (11) are worked out. If the field is of low intensity the usual 
perturbation theory applies (Gontier and Trahin 1971). If, however, the external field 
is of the same (or higher) order of magnitude than the static field given by V ( r ) ,  then 
other methods would be necessary. The other limiting case is when the external field is 
so strong that the background potential V ( r )  can be treated as a perturbation. It seems 
to be quite natural, at least in scattering problems which frequently occur in highly 
ionised plasma, to build up a perturbation series in powers of V ( r ) ,  where the complete 
set of the plane wave solutions of (4a)  is used as a basis. Let us denote $’(x, t )  of ( 5 a )  in 
the case of g ( p ’ ) = S ( p - p ’ )  by $tP, and look for the solution of equation (11) in the 
following form: 

with the initial condition Gi(t = 0) = &. By substituting into (11) and neglecting terms 
higher than first order in V ( r ) ,  one obtains the following differential equation for ap(t):  

e& 2 i 1  e& ih = V ( p  -pi) exp[ % g jot [ ( p +-sin w UT) -(pi +- w sin UT)’] dT). (13) dt  

The solution of this equation is simple, and from (12) we have an explicit expression for 
+b1(x, t) in the first approximation. From this latter expression the transition matrix 
element for the scattering process has the form 

Tfi = ($p f ,  $1) 

= -(i/fi) V(pi -p i )  

e& X j o  exp[ i 1  %lo ‘’ [ (p,+*sin UT) -( pi+-sin O T ) ~ ]  d7) dt’ (14) 2 

w 0 

where $,,, is the final-state plane wave function, satisfying the free particle equation 
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(4a). The term -(i/h)V(pf-pi) is the usual scattering amplitude in the Born approxi- 
mation, The structure of the second factor on the right-hand side satisfies the general 
requirements found for the case of a Hamiltonian which is periodic in time (Reiss 1970, 
Bergou 1975). The obvious advantage of the present method is that (14) naturally 
emerges as the first term in a perturbation expansion in powers of V while in Reiss's 
method or in the different approach by Faisal(1973), Gontier and Rahman (1974) and 
Bergou (1976), it was not quite clear how to obtain further corrections to the result. The 
use of the basis set (5) implies that terms containing the vector potential A are not 
regarded as small perturbations, and thereby we avoid some objections (Cohen- 
Tannoudji et a1 1973) raised against the much discussed method of Reiss. 

Using the definition of the J, (2) Bessel functions, the periodically time dependent 
part of the exponential term in the integrand can be expanded into power series of the 
absorbed and emitted photons: 

e& 
z=- 2 Q, m hw 

i"J,(z) exp (; - n h o t  ) , 
where 

Q=Pi-Pf and p:/2m = pzj2m - nhw. 

pi and pf are the initial and final momenta, respectively, and so Q accounts for the 
momentum change in the scattering. If this expansion is introduced into (14) the time 
integration can easily be carried out and one obtains the following final result for the 
scattering cross section: 

Here dag&,/dR is the differential cross section of the elastic scattering on a V ( r )  
background potential in the Born approximation, and the Bessel function of order n 
accounts for the modification of it due to n-photon processes. The scattering process is 
elastic with respect to the background potential but inelastic with respect to the external 
field. Equation (15) is formally similar to the result found by Reiss (1970) for 
bound-free transitions, but even for the same problem, the two approaches should give 
different coefficients, due to our non-perturbational treatment of A. It should be noted 
that our method gives systematic expansion in powers of V but not in photon number n : 
going to second order in V would alter all terms in (15). 

5. Summary 

The result (15) was obtained earlier by several authors, however by a somewhat 
different method, the so-called space translation transformation (Faisal 1973, Gontier 
and Rahman 1974, Bergou 1976). The main advantage of the method outlined in the 
present paper is the simplicity of obtaining higher-order approximations in V(r) (the 
background potential) in contrast to the space translation method, where the pertur- 
bation potential is much more complicated and therefore the extension of the Born 
approximation is difficult. The generalisation of this method to relativistic electrons as 
well as its extension beyond the dipole approximation is treated in Bergou and Varr6 
(1 980). 
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